Review and Reinforce

Understanding Solutions

Understanding Main Ideas

The diagram below shows three mixtures. Identify each mixture as a solution, colloid, or suspension. Explain.

- Answer the following questions on a separate sheet of paper.
- 4. Compare and contrast what happens to the particles of an ionic solid and a molecular solid when each mixes with water.
- 5. What are two ways that solutes affect the properties of solvents?

Building Vocabulary

Fill in the blank to complete each statement.

- 6. The part of a solution that is present in the smaller amount is the _____.
- 7. The part of a solution that is present in a larger amount is the ______
- 8. A(n) ______ is a mixture containing small, undissolved particles that do not settle out, but are large enough to scatter light.
- 9. A mixture in which particles can be seen and easily separated by settling or filtration is called a(n) ______
- 10. A well-mixed mixture that contains a solvent and at least one solute is called

Date Class

Review and Reinforce

Concentration and Solubility

Understanding Main Ideas

Answer the following questions in the spaces provided. Use a separate sheet of paper if you need more room.

- 1. What amounts do you compare when measuring concentration?
- 2. How can you tell that a white powder is salt without tasting it?
- 3. Which solution will have more gas dissolved in it, a solution under high pressure or one under low pressure?
- **4.** How does temperature affect the solubility of most solids?

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

- 5. ___ dilute solution
- **6.** ___ concentrated solution
- **7.** ___ solubility
- **8.** ___ saturated solution
- a. a measure of how much solute can dissolve in a solvent at a given temperature
- b. a solution that has so much solute that no more can dissolve
- c. a solution that has only a little solute
- d. a solution that has a lot of solute

Review and Reinforce

Describing Acids and Bases

Understanding Main Ideas

Answer the following questions in the spaces provided.

- 1. When found in foods, what does an acid taste like?
- 2. When found in foods, what does a base taste like?
- 3. Compare how an acid and a base will each react with the metals magnesium, zinc, and iron.
- 4. Compare how an acid and a base will each react with carbonate ions.
- 5. What color does an acid turn litmus paper?
- 6. What color does a base turn litmus paper?
- 7. What is neutralization?

Building Vocabulary

On a separate sheet of paper, write a definition for each of these terms.

- 8. corrosive
- 9. indicator

Review and Reinforce

Acids and Bases in Solution

Understanding Main Ideas

Complete the concept map shown below and answer the following questions on a separate sheet of paper.

- 5. What is the difference between a strong acid and a weak acid?
- 6. What is the difference between a strong base and a weak base?
- 7. Which solution has a greater concentration of hydrogen ions (H+), a solution with a pH of 3 or one with a pH of 7? Explain.
- 8. What are the products formed when a base reacts with an acid?
- 9. What is the pH of a neutral solution?

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition in the right column on the line beside the term in the left column.

- **10.** ___ hydrogen ion
- **11.** ___ pH scale
- 12. ___ neutralization ...
- 13. ___ salt
- **14.** ___ hydroxide ion

- a. ionic compound that can form from the reaction of an acid with a base
- b. reaction between an acid and a base
- c. H+
- d. series of numbers that indicates the concentration of hydrogen ions in solution
- e. OH-